

Foundational Physics of Multi-Body FRC Interactions: An Assessment of Research Informing the Trivergence Protocol Control System (2005-2015)

Section 1: Executive Summary & Strategic Context

1.1. Assessment Overview

This report assesses with high confidence that a robust and evolving body of unclassified U.S. research into two-body Field-Reversed Configuration (FRC) merging between 2005 and 2015 provided the essential, enabling physics and computational tools required to conceptualize and design an advanced control system such as the Trivergence Protocol. Research programs, primarily led by the University of Washington/MSNW LLC and Los Alamos National Laboratory (LANL) in collaboration with the Air Force Research Laboratory (AFRL), successfully demonstrated the high-velocity collision, merging, and subsequent thermalization of FRC plasmoids. These experiments provided the foundational "proof of principle" that the kinetic energy of colliding plasmas could be efficiently converted into thermal energy within a stable, merged configuration.

Concurrently, the maturation of advanced computational plasma physics, marked by the evolution from fluid-based Magnetohydrodynamic (MHD) models to more sophisticated hybrid-kinetic and Particle-in-Cell (PIC) codes, provided the necessary fidelity to model the non-MHD effects that govern FRC stability and magnetic reconnection. This evolution in simulation capability was the critical step in developing the predictive physics engines that would form the core of any viable control system for such a dynamic process.

However, the specific application to a *three-body* system, as implied by the "Trivergence"

nomenclature, represents a significant leap in complexity not addressed in the open literature. This transition from a symmetric, two-body collision to a potentially chaotic, three-body interaction marks the likely boundary between the unclassified foundational science detailed in this report and the classified, application-specific engineering required to develop an operational system.

1.2. The Trivergence Problem: Deconstruction of a Three-Body Chaotic Control Challenge

The development of the Trivergence Protocol control system was predicated on solving a technical challenge of immense complexity: the real-time management of a chaotic, multi-body plasma system.¹ The operational physics implied by this system is not a steady-state confinement problem, but a high-frequency, pulsed-power process requiring precise, predictive, closed-loop control. A deconstruction of the technical requirements reveals the profound scientific basis that would have been necessary for its conception.

The system must manage the real-time, non-linear dynamics of at least two, and as implied by the name, likely three independent, high-beta FRC plasmoids. The control objective is to orchestrate their interaction—a symmetric, timed collision—to produce a predictable, stable, and controllable energy release. The central challenge is the management of the "chaotic phase" of the merger. This phase is an inherently violent event dominated by the physics of magnetic reconnection, where magnetic field lines rapidly reconfigure, driving turbulence, shock heating, and the rapid thermalization of the plasmoids' kinetic energy into a single, hotter, merged plasma entity.

The performance requirements for the control system's bespoke System-on-Chip (SoC) are a direct reflection of the physics it must master. The documented specifications—a control loop latency of less than 20 microseconds ($<20\mu\text{s}$), an aggregate sensor data throughput exceeding 300,000 frames per second ($>300\text{ kfps}$), and a computational load between 0.5 and 2.0 Teraflops (TFLOPS)—preclude the use of simple reactive feedback algorithms.¹ Plasma instabilities can evolve on microsecond timescales, meaning a purely reactive system would always be too late to suppress them. The control architecture must therefore be based on high-fidelity, predictive physics models. This establishes the absolute necessity for the type of advanced computational research detailed in Section 3 of this report, as the control system's core function is to run a real-time simulation of the impending merger, predict the onset of instabilities, and make microsecond adjustments to magnetic fields to guide the system to a stable and predictable outcome.

Section 2: Experimental Investigations into FRC-FRC Collision Dynamics (CIQ 1)

This section comprehensively surveys the key U.S. experimental programs that investigated the formation, translation, and collisional merging of FRCs during the 2005-2015 timeframe, directly addressing the first Core Intelligence Question regarding the landscape of relevant experimental research. The collective findings from these programs provided the critical "proof of principle" that FRC merging was a viable and potent mechanism for plasma heating and energy concentration.

2.1. The University of Washington / MSNW Nexus (Slough, Hoffman): The Propulsion Vector

The research led by Dr. John Slough and Professor Alan L. Hoffman, centered at the University of Washington's Plasma Physics Laboratory and the spin-off company MSNW LLC, was explicitly oriented toward compact, high-energy-density systems with direct applications in spacecraft propulsion and pulsed fusion power. This body of work is the most direct experimental precursor to a Trivergence-like application, as it focused on the dynamic, high-velocity interactions of FRCs.

The **Pulsed High Density (PHD) FRC Experiment** (circa 2005) established the early focus of this group. As outlined in a 2005 American Physical Society Division of Plasma Physics (APS-DPP) meeting abstract, the explicit goal of the PHD experiment was to form, accelerate, and compress an FRC to extreme parameters: a density of $1 \times 10^{22} \text{ m}^{-3}$ and a temperature greater than 1 keV.² This program demonstrated the intent to explore a compact, pulsed operational regime far removed from the quasi-steady-state goals of mainstream fusion research.

This work culminated in the **Inductive Plasma Accelerator (IPA) experiment** at MSNW. The IPA was a landmark device designed to form two FRCs and accelerate them towards each other at extreme velocities for a head-on collision.³ Multiple publications and presentations detail the experiment's success in merging two FRCs at relative velocities up to 600 km/s.⁴ Key findings from the IPA program, directly relevant to the Trivergence concept, include the demonstration of⁴:

- **Rapid Thermalization:** Upon collision, the immense directional kinetic energy of the FRCs was observed to be rapidly and efficiently converted into thermal energy.

- **Complete Magnetic Reconnection:** The two separate magnetic structures of the initial FRCs were observed to undergo complete magnetic reconnection, forming a single, merged plasmoid.
- **Compression to Fusion-Relevant Temperatures:** The merged FRC was subsequently compressed with an external magnetic field, achieving kilovolt ion temperatures.⁴

The "collide-and-compress" operational sequence demonstrated on the IPA experiment is a direct physical analogue for the pulsed power cycle that would be managed by the Trivergence Protocol. Further solidifying this link to applied systems are patents assigned to Dr. Slough and his collaborators during this period. Patents such as US9524802B2, US9082516B2, and US20110293056A1 explicitly describe apparatus and methods for generating fusion energy and/or engine thrust by first forming one or more FRCs—sometimes via merging—and then collapsing a metal shell or applying a strong magnetic field to compress the plasma to fusion conditions.⁶ This body of work confirms a clear and consistent conceptual through-line from the fundamental physics of FRC merging to its intended application in advanced power and propulsion systems.

2.2. The LANL-AFRL Collaboration (Wurden, Tuszewski, Intrator): The Magnetized Target Fusion (MTF) Vector

Running in parallel to the propulsion-focused work at UW/MSNW was a methodical, multi-year collaboration between Los Alamos National Laboratory and the Air Force Research Laboratory. This effort was centered on the concept of Magnetized Target Fusion (MTF), which aimed to achieve fusion by compressively heating an FRC plasma with a magnetically imploded solid metal liner.¹ While the end application differed, this research was critical for developing the robust, stable, high-density FRCs that would be a prerequisite for any multi-body interaction scheme. The research progressed through a classic technology maturation pipeline.

The foundation was the **Field Reversed Experiment-Liner (FRX-L)** at LANL (circa 2001-2006). FRX-L's mission was to serve as the plasma injector for the MTF program, with the specific technical objective of producing a stable, high-density (target $n \approx 10^{17} \text{ cm}^{-3}$), and translatable FRC.¹ This program established the baseline techniques for creating the type of dense, well-behaved plasma targets needed for dynamic experiments.

The culminating effort was the **Field-Reversed Configuration Heating Experiment (FRCHX)**, strategically located at AFRL's Shiva Star facility (circa 2007-2013) to leverage its powerful capacitor bank as the liner driver.¹ The program's primary challenge became achieving an FRC with a trapped-flux lifetime of approximately $20 \mu\text{s}$, the duration required to

match the liner's implosion timescale. This intense focus on stability and confinement during a highly dynamic, microsecond-scale event provided essential data on FRC behavior under extreme conditions.

To solve the lifetime problem on FRCHX, the **Magnetized Shock Experiment (MSX)** was established at LANL (circa 2013-2015) as a dedicated testbed, explicitly using hardware from the earlier FRX-L program.¹ The most significant breakthrough from MSX was the development of a plasma gun-assisted formation technique. By injecting a "seed plasma" prior to the main discharge, researchers achieved a landmark ~350% increase in the trapped magnetic flux, a key parameter governing FRC stability and lifetime.¹ This innovation was developed with the explicit "intention of subsequent fielding on...FRCHX" and represented the primary solution to the flagship experiment's core technical obstacle.¹

2.3. The Princeton Plasma Physics Laboratory (PPPL) & Swarthmore College Contribution

An alternative and scientifically significant pathway to FRC formation was explored by a collaboration involving Swarthmore College, Princeton Plasma Physics Laboratory (PPPL), and General Atomics. The **Swarthmore Spheromak Experiment (SSX-FRC)** investigated the formation of FRCs not by colliding two FRCs, but by merging two *counter-helicity* spheromaks.¹¹

Spheromaks are similar to FRCs but possess an additional toroidal magnetic field component. By merging two spheromaks with opposite toroidal fields (opposite helicity), the toroidal fields annihilate each other through magnetic reconnection, leaving a purely poloidal field FRC. While the initial objects were different, this research provided crucial experimental data on the fundamental physics of magnetic reconnection, plasma relaxation, and stability in the high-beta, low-helicity limit that is directly relevant to the FRC merging process. This work contributed significantly to the broader U.S. knowledge base on the dynamics of compact toroid merging.

2.4. Relevant International Context (Benchmarking U.S. Efforts)

The U.S. research did not occur in a vacuum. Several high-profile international experiments during this period explored FRC-FRC merging, providing both competitive impetus and

external validation of the core concepts.

The most significant of these was the **C-2 experiment** at the private company Tri Alpha Energy (now TAE Technologies), where key FRC expert Dr. M. Tuszewski was a principal researcher. In a landmark 2010 *Physical Review Letters* publication, the C-2 team reported the formation of a hot, stable, and long-lived FRC by colliding and merging two theta-pinch-formed plasmoids at supersonic speeds (~250 km/s).¹⁵ The results were remarkable, demonstrating a greater than tenfold amplification of the poloidal magnetic flux and the conversion of over 60% of the plasmoids' initial kinetic energy into thermal energy of the final merged plasma.¹⁵ This provided powerful, high-profile validation for the collisional merging concept as a potent plasma heating mechanism.

Other relevant international programs included the **FAT-CM (FRC Amplification via Translation-Collisional Merging)** device at Nihon University in Japan, which also studied the super-Alfvénic collision of two FRCs, focusing on the self-organizational processes that reform a stable FRC after a violent, destructive collision.¹⁸ Additionally, the

KMAX (Keda Mirror with AXisymmetry-FRC) experiment at the University of Science and Technology of China provided direct diagnostic evidence of magnetic reconnection and the formation of a reversed-current sheet during the FRC merging process.²⁶

Collectively, this body of experimental work, both domestic and international, established an unambiguous scientific fact: the high-velocity collision and merging of FRCs is an exceptionally effective method for rapidly converting kinetic energy into thermal energy, amplifying magnetic flux, and forming a single, hot, stable plasma. This experimental validation of the core physical process was the necessary scientific foundation upon which a program to develop a control system like Trivergence could be built. The experiments proved what needed to be controlled.

The following table provides a comparative summary of the key U.S. experimental programs that investigated FRC merging dynamics during the specified timeframe.

Metric	IPA / PHD (UW/MSNW)	FRCHX / MSX (LANL/AFRL)	SSX-FRC (Swarthmore/PPP L)
Institution(s)	University of Washington, MSNW LLC	Los Alamos National Lab, Air Force Research Lab	Swarthmore College, Princeton Plasma Physics Lab, General Atomics

Key Personnel	J. Slough, A. Hoffman, G. Votroubek	G. Wurden, T. Intrator, M. Tuszewski, J. Degnan	M. Brown, C. Cothran, E. Belova, M. Schaffer
Formation Method	Dynamic Theta-Pinch (Inductive Plasma Accelerator)	Reversed-Field Theta-Pinch (with Plasma Gun Assist)	Counter-Helicity Spheromak Merging
Merging Velocity	High (up to 600 km/s relative)	N/A (Single FRC for liner compression)	Low (Quasi-static merging)
Key Plasma Parameters	$n > 10^{22} \text{ m}^{-3}$, $T_i > 1 \text{ keV}$ (post-compression)	$n \approx 10^{17} \text{ cm}^{-3}$, $T \approx 300 \text{ eV}$ (target)	$n \approx 10^{15} \text{ cm}^{-3}$, $T \approx 30 \text{ eV}$
Primary Objective	Demonstrate FRC merging & compression for propulsion/pulsed fusion	Develop stable FRC target for Magnetized Target Fusion (MTF)	Study fundamental reconnection & stability physics
Key Published Findings	Rapid thermalization of kinetic energy; compression to kV temperatures.	~350% increase in trapped flux via plasma gun assist; lifetime extension.	FRC formation via spheromak merging; detailed 3D magnetic structure analysis.

Section 3: High-Fidelity Computational Modeling of the Merging Process (CIQ 2)

The successful design of a predictive control system for a process as complex and rapid as FRC merging is impossible without a deep, quantitative understanding of the underlying physics. This understanding was developed through a parallel track of high-fidelity computational modeling that evolved significantly during the 2005-2015 period. This section

analyzes the computational research that provided the essential physical insights necessary to inform a system like the Trivergence Protocol, directly addressing the second Core Intelligence Question.

3.1. The Critical Evolution from MHD to Kinetic Models

The history of FRC simulation is marked by a critical progression from simpler fluid models to more complex and accurate kinetic models. This evolution was essential for capturing the physics relevant to a high-performance control system.

The traditional tool for plasma simulation is **Magnetohydrodynamics (MHD)**, which models the plasma as a single, electrically conducting fluid. While computationally efficient and useful for describing the large-scale, global behavior of a plasma, MHD is fundamentally insufficient for accurately modeling FRCs.²⁷ FRCs are high-beta plasmas containing a magnetic null line where kinetic effects—those related to the detailed velocity distributions of individual ions and electrons—become dominant. Key phenomena such as the FRC's anomalous stability to the tilt mode, the physics of magnetic reconnection at the heart of the merging process, and transport properties are governed by non-MHD effects like Finite Larmor Radius (FLR) stabilization, the Hall effect, and pressure tensor anisotropy. An MHD-based control model would be blind to the very physics it needed to manage.

The critical technological inflection point was the development and application of more advanced simulation codes. These fall into two main categories:

- **Hybrid Codes:** These models treat the heavy ions as a collection of individual kinetic particles (using a Particle-in-Cell, or PIC, method) while modeling the lighter, faster-moving electrons as a fluid. This approach captures the crucial ion kinetic effects while remaining more computationally tractable than a full PIC simulation.
- **Full Particle-in-Cell (PIC) Codes:** These codes model both ions and electrons as individual particles, providing the most fundamental and complete description of the plasma physics, albeit at a very high computational cost.

A recent paper (published after 2015 but summarizing the state-of-the-art developed during the period of interest) explicitly highlights this transition, noting that "All previous theoretical and simulation work on FRC merging and compression was performed using 2D MHD models" and that their work presents "novel 2D hybrid simulations".²⁹ The

HYM (Hybrid and MHD) code, originally developed at PPPL and used extensively for FRC studies, is a prime example of a tool capable of performing both MHD and hybrid simulations, allowing for direct comparison of the results.³⁰ This evolution from fluid to kinetic modeling provided the necessary physical fidelity to create a predictive engine for the Trivergence

control system.

3.2. Modeling the "Chaotic Phase": Magnetic Field Structure & Reconnection

The "chaotic phase" of FRC merging is the process of magnetic reconnection, where the oppositely directed magnetic field lines of the two approaching plasmoids annihilate and reconfigure into a new, single magnetic topology, violently converting stored magnetic energy into plasma kinetic and thermal energy.²⁶ Accurately modeling this process is the central challenge.

Comparative simulations using the HYM code reveal the critical differences between MHD and hybrid models in describing this phase.³⁰ While the large-scale global dynamics (e.g., the approach and initial collision of the FRCs) are similar in both models, the detailed physics of the reconnection layer are profoundly different. The hybrid simulations show key kinetic signatures that are absent in MHD, including:

- The generation of a transient **quadrupole magnetic field** out of the simulation plane, a classic signature of Hall reconnection physics driven by the decoupling of ion and electron motion.
- The formation of **thicker and shorter current layers** at the reconnection site.
- Significantly **lower radial plasma outflow velocities** from the reconnection region.

These details are not academic; they are mission-critical for a control system. A predictive model must accurately capture the evolution of the magnetic field structure and the rate of energy release to anticipate the resulting plasma state. The hybrid models provided this necessary level of detail.

This work was conceptually supported by a parallel theoretical effort at Los Alamos National Laboratory. The T-2 Theoretical Division, led by researchers like Dr. Hui Li, was advancing the theory of **3D turbulent magnetic reconnection**.¹ This framework posits that in realistic, turbulent plasmas, reconnection is a

fast process, with its rate governed by the large-scale dynamics of the turbulence rather than the slow, microscopic plasma resistivity. This theory provides the formal basis for the rapid, explosive energy release observed in FRC merging experiments. A key indicator of informal knowledge transfer between the LANL experimental and theoretical groups was their co-attendance and presentation in the same specialized session on "Magnetic Reconnection" at the 2013 APS-DPP meeting, providing a sanctioned venue for technical exchange on this exact topic.¹

3.3. Simulating Particle Flows and Energy Conversion

The ultimate purpose of a control system is to manage the state of the plasma—its density, temperature, and shape—by manipulating the magnetic fields. High-fidelity simulations provide the direct link between the control inputs (magnetic fields) and the system outputs (plasma state).

Hybrid simulations offer a detailed picture of the **particle flows** and energy conversion during merging. The models show ion velocity profiles near the reconnection region that are much wider and have lower peak outflow speeds than those predicted by MHD.³⁰ Accurately predicting these flows is crucial for understanding how the shape and stability of the merged FRC will evolve. The simulations also directly model the

energy conversion process, tracking the transformation of the initial kinetic energy of the FRCs and the magnetic energy at the midplane into ion thermal energy.³⁰

Crucially, the simulations reveal that the outcome of the merging process is extremely sensitive to the initial conditions of the colliding FRCs.²⁹ Small variations in the initial separation distance, relative velocity, internal plasma beta (the ratio of plasma pressure to magnetic pressure), and elongation (shape) can determine whether the FRCs merge completely, form a less stable "doublet" configuration, or simply bounce off each other without merging. This sensitivity is the key to the control strategy. It implies that control is best achieved not by trying to actively "steer" the plasmoids during the chaotic collision, but by precisely manipulating the formation and acceleration phases to ensure the FRCs arrive at the collision point with the exact initial conditions that simulations have predetermined will lead to a successful, stable merger.

3.4. Addressing the Three-Body Problem: The Unclassified Gap

A comprehensive review of the unclassified literature reveals a critical intelligence gap. The overwhelming majority of both experimental and computational research in the 2005–2015 period, and indeed to the present day, focuses exclusively on **two-body merging**—either FRC-FRC or spheromak-spheromak collisions.¹¹

No unclassified or limited-distribution research papers, technical reports, or conference proceedings were identified that specifically model the simultaneous collision and merging of *three* FRCs. The transition from a symmetric, two-dimensional, two-body problem to a fully

three-dimensional, three-body problem represents a fundamental increase in complexity. Such an interaction would be prone to non-axisymmetric instabilities and highly chaotic behavior that would require dedicated, large-scale, 3D kinetic simulations to understand and control. This topic represents the most significant gap in the open literature and is the most likely area where the foundational research described in this report transitioned into a classified, application-specific modeling and engineering effort to support the Trivergence Program.

The following table summarizes the key high-fidelity computational modeling efforts relevant to FRC merging.

Publication/Authors	Simulation Code	Model Type	Key Physics Modeled	Primary Conclusions/Relevance to Control Systems
Belova, et al. (2024, summarizing prior work) ²⁹	HYM	Hybrid (Kinetic Ions, Fluid Electrons) & MHD	FRC-FRC merging, reconnection, kinetic effects, compressional merging	Demonstrates critical differences between MHD and kinetic models; shows generation of quadrupole fields and distinct particle flows. Reveals high sensitivity of merge outcome to initial conditions, providing a blueprint for a predictive control strategy.

Belova, et al. (2005) ³⁶	HYM	3D Resistive MHD	Counter-helicity spheromak merging, tilt instability, reconnection	Models FRC formation via spheromak merging; shows stabilizing effects of viscosity and line-tying on tilt mode. Provides insight into reconnection physics in high-beta plasmas.
Slough, et al. (MSNW) ³	2D MHD	2D Resistive MHD	FRC merging and compression	Used for design and analysis of the IPA experiment; predicted high densities ($>10^{22}\text{m}^{-3}$) and temperatures ($>800\text{ eV}$) for merged/compressed FRCs.
Tanaka, et al. (Nihon U.) ¹⁸	Lamy Ridge (2D MHD)	2D Resistive MHD	FRC formation, translation, and collisional merging	Used to simulate FAT-CM experiments; focused on rethermalization and self-organization of the merged FRC.

Section 4: The Research Ecosystem: Funding and Institutional Linkages (CIQs 3 & 4)

This section conducts a network and funding analysis to map the ecosystem that produced the foundational FRC merging research, directly addressing the third and fourth Core Intelligence Questions regarding sponsorship and institutional linkages to industry. The analysis reveals a multi-agency interest in the technology and a clear pattern of compartmentalization between the unclassified research world and the classified development programs.

4.1. Mapping the Institutional Landscape & Personnel Network

The unclassified research into FRC merging during the 2005-2015 period was concentrated in a few key centers of excellence:

- **University of Washington (UW) and MSNW LLC:** This nexus was arguably the most aggressive in pursuing the high-energy-density, propulsion-oriented aspects of FRC research. The collaboration was led by Professor Alan L. Hoffman of the UW Plasma Physics Laboratory and Dr. John Slough, who held positions at both UW and as the founder of the agile research company MSNW.³⁹ Dr. Slough stands out as a central lynchpin in the entire ecosystem, bridging academia, small business R&D, and the major commercial venture Helion Energy, which he co-founded.⁴¹
- **Los Alamos National Laboratory (LANL):** LANL's P-24 Physics Division was the institutional home for the MTF program, leveraging decades of prior FRC research. The effort was led by a core team of experts including Dr. Glen A. Wurden, Dr. Thomas P. Intrator (deceased 2014), and Dr. M. Tuszewski.¹
- **Princeton Plasma Physics Laboratory (PPPL) and Swarthmore College:** This academic collaboration focused on the alternative FRC formation method of merging counter-helicity spheromaks on the SSX device, contributing fundamental knowledge on magnetic reconnection.¹¹

The flow of human capital from these centers is a key indicator of technology transition pathways. The career of Dr. M. Tuszewski, for example, traces from his foundational work at LANL to his later role as a key scientist at Tri Alpha Energy (TAE Technologies), one of the world's leading private FRC fusion companies.¹⁵ This illustrates the common and vital pipeline

of specialized talent moving from the national laboratories into the private sector.

4.2. Tracing the Funding: From DOE to DoD

A forensic analysis of the acknowledgments sections of journal articles, conference proceedings, and programmatic documents reveals a clear multi-agency interest in FRC merging technology, extending well beyond standard academic fusion research.

The primary sponsor for the bulk of the foundational work was the **Department of Energy's Office of Fusion Energy Sciences (OFES)**, which is the main federal patron for fusion research in the United States. This is explicitly stated in numerous publications from LANL, PPPL, and UW.²

However, significant and targeted funding from defense and aerospace agencies demonstrates a clear interest in the applied potential of the technology:

- **Department of Defense (DoD):** The LANL-AFRL collaboration on the FRCHX experiment was a direct DoD partnership, with the **Air Force Research Laboratory (AFRL)** providing its unique Shiva Star pulsed-power facility and key personnel, including Dr. John Degnan and Dr. Chris Grabowski.¹ Furthermore, Dr. Slough's work at MSNW received Small Business Innovation Research (SBIR) grants from the DoD.¹ A 2010 presentation at the highly specialized, defense-focused JANNAF (Joint Army-Navy-NASA-Air Force) Propulsion Meeting documents a collaboration between Dr. Slough, Dr. David Kirtley (MSNW), and Dr. Andrew Ketsdever of the **Air Force Office of Scientific Research (AFOSR)**, confirming Air Force interest in the propulsion applications of the research.⁴⁵
- **NASA:** Dr. Slough's "Fusion Driven Rocket" concept, which is based on FRC technology, was funded by the **NASA Institute for Advanced Concepts (NIAC)** program, indicating interest in its potential for rapid interplanetary transit.⁴⁶
- **DARPA:** While no direct funding for the *physics research* from the Defense Advanced Research Projects Agency was identified in the 2005-2015 period, the provided intelligence documents assess that the subsequent development of the Trivergence Protocol's replacement SoC at BAE Systems was conducted under the programmatic and financial cover of **DARPA's Electronics Resurgence Initiative (ERI)**.¹ BAE's documented participation in unclassified ERI programs like T-MUSIC serves as strong corroborating evidence for their role as a trusted DARPA partner in advanced microelectronics.¹
- **Intelligence Community (IC):** An exhaustive search of the open-source record yielded no direct evidence linking this specific FRC merging research to funding from IC entities via the National Intelligence Program (NIP) or Military Intelligence Program (MIP).⁴⁷ This remains a key intelligence gap, as any such sponsorship would almost certainly be

classified and not disclosed in public documents.

The use of the SBIR program by Dr. Slough's MSNW is particularly significant. The SBIR and STTR (Small Business Technology Transfer) programs are Congressionally-mandated mechanisms used extensively by the DoD to fund high-risk R&D at small businesses with the explicit goal of transitioning the resulting technology to solve government needs.⁴⁹ The SBIR program effectively serves as a deniable, low-signature incubator, allowing an agency to mature a technology to a sufficient readiness level before it is transitioned into a larger, and often classified, program at a prime contractor.

4.3. The Industrial Firewall: Assessing Links to Prime Contractors

A systematic search for direct, open-source professional links—such as co-authored papers, joint patents, or formal Cooperative Research and Development Agreements (CRADAs)—between the key FRC merging researchers and the industrial primes of interest yielded a consistent negative finding.

- **Lockheed Martin:** No direct collaborative links were found between the key FRC merging research groups and Lockheed Martin during the 2005-2015 period.⁵³ The Skunk Works® CFR program is understood to have begun around 2010.⁵⁷ This absence of public collaboration is highly anomalous for such a niche and relevant field of research. It is, however, the expected signature of a professionally managed and highly compartmentalized Special Access Program (SAP), as described in the foundational intelligence documents.¹ The primary vector for knowledge transfer into the "black" program was not collaboration but the direct recruitment of personnel with prior national laboratory experience, exemplified by the career path of plasma physicist Gabriel Ivan Font from LANL to the Skunk Works® CFR program.¹
- **Freescale Semiconductor & BAE Systems:** Similarly, no open-source evidence was found of direct collaboration on plasma physics research between the academic/lab groups and the electronics firms Freescale or BAE Systems.⁶² Their role, as outlined in the provided intelligence, was not in fundamental physics but in the highly specialized and firewalled domain of designing and fabricating the radiation-hardened SoC and control system.¹ The connection is functional—as a critical, compartmentalized supplier—rather than collaborative at the foundational research level. This structure is a classic counter-intelligence technique designed to minimize the number of individuals with "big picture" access, thereby protecting the program's core secrets.

Research	Stated Funding	Documented	Link to Industrial
----------	----------------	------------	--------------------

Project/Paper	Source(s)	Collaborations	Primes
PHD/IPA Experiments ²	DOE-OFES, NASA-NIAC, DoD (SBIR), AFOSR	University of Washington, MSNW LLC	None Found
FRCHX/MSX Experiments ¹	DOE-OFES, AFRL	Los Alamos National Laboratory, Air Force Research Laboratory	None Found
SSX-FRC Experiment ¹¹	DOE-OFES, National Science Foundation (NSF)	Swarthmore College, PPPL, General Atomics	None Found
HYM Code Simulations ³⁰	DOE-OFES	PPPL, Helion Energy	Helion Energy (post-2015 paper)
C-2 Experiments ¹⁵	Private (Tri Alpha Energy)	TAE, UC Irvine, University of Pisa	TAE Internal

Section 5: Synthesis and Final Assessment

5.1. The Scientific Pathway to Trivergence

The synthesis of the experimental and computational evidence provides a coherent narrative of the scientific maturation that enabled the Trivergence Protocol concept. The pathway was built upon two essential and mutually reinforcing pillars of research conducted between 2005 and 2015.

The first pillar was the **experimental validation of energetic, supersonic FRC-FRC merging**. The work of Dr. John Slough's group at the University of Washington and MSNW, particularly with the Inductive Plasma Accelerator (IPA), proved that two FRCs could be

collided at extreme velocities to produce a single, hotter, compressed plasma. This, along with high-profile validating results from the C-2 experiment, demonstrated that the core energy conversion mechanism was not just theoretically possible but experimentally viable and potent. These experiments established the physical process that the Trivergence Protocol was designed to control.

The second pillar was the **concurrent development of advanced hybrid-kinetic simulation codes**. The evolution from MHD models to codes like HYM, capable of capturing the essential non-MHD physics of FRCs, provided the necessary predictive fidelity to model the chaotic, non-linear dynamics of the merger process. This research created the physics engine that could serve as the "brain" of a predictive control system, capable of anticipating instabilities and guiding the merger to a stable outcome by precisely controlling the initial conditions of the colliding plasmoids.

The unclassified research base effectively de-risked the fundamental physics of two-body FRC merging and developed the essential modeling tools required for a control system.

5.2. Key Intelligence Gaps and Implications

Despite the clarity of the two-body research pathway, significant intelligence gaps remain, primarily centered on the transition from foundational science to the specific three-body application.

- **The Three-Body Model:** The primary and most critical intelligence gap is the complete absence of open-source data on the physics of simultaneous three-body FRC interactions. The dynamics of a three-body collision are fundamentally more complex and potentially more chaotic than a symmetric two-body event. The modeling, simulation, and experimental validation of this process is the likely "crown jewel" of the classified program and represents the core, non-public physics that the Trivergence Protocol was specifically designed to master.
- **The Control Algorithm:** While the physics models that would *inform* the control algorithm are identifiable (i.e., hybrid-kinetic codes), the specific control theory and algorithms employed are unknown. The translation of predictive simulation outputs into real-time, closed-loop adjustments of magnetic fields would likely involve advanced techniques such as model predictive control, but the specific implementation remains a classified detail.
- **Sponsorship Transparency:** The full extent of DoD and Intelligence Community sponsorship remains opaque. While AFRL, AFOSR, and NASA interest is documented, any direct funding from intelligence agencies or through classified budget line items would not appear in the open-source record, obscuring the full programmatic and financial

scope of the government's interest in this technology.

5.3. Recommendations for Further Collection

To close the identified intelligence gaps, the following collection efforts are recommended:

1. **Focus Technical Intelligence (TECHINT):** Task collection assets to search for any experimental signatures that would differentiate a three-body FRC system from a two-body one. This could include monitoring known test facilities for unique magnetic field harmonics, asymmetric particle or radiation emissions (e.g., neutrons, x-rays), or other physical observables inconsistent with a simple, symmetric two-body collision.
2. **Focus Human Intelligence (HUMINT):** Prioritize identifying and engaging with personnel who have worked on both the unclassified hybrid simulation codes (e.g., at PPPL, LANL, or associated universities) and within the classified programs at Lockheed Martin Skunk Works® or BAE Systems. Such individuals would represent the direct vector for the transfer of the critical modeling capability and would possess unique insight into how the foundational models were adapted for the more complex, applied problem.
3. **Monitor SBIR/STTR Phase III Awards:** The Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) databases should be continuously monitored for any Phase III awards granted to MSNW LLC or associated entities by a DoD component. A Phase III award signifies the transition of an SBIR-funded technology into a funded acquisition program or for direct use by the government. These awards are often less publicized than Phase I and II grants and would serve as a dispositive indicator that the FRC merging technology was successfully matured and formally transitioned into an applied defense program.

Works cited

1. Skunk Works CFR Precursor Analysis.pdf
2. 2005 47th Annual Meeting of the Division of Plasma Physics - Event - Overview of the Pulsed High Density (PHD) FRC Experiment, accessed September 2, 2025, <https://meetings.aps.org/Meeting/DPP05/Session/GP1.86>
3. Overview of the Inductive Plasma Accelerator (IPA) FRC Merging/Compression Experiment, accessed September 2, 2025, https://www.researchgate.net/publication/253558513_Overview_of_the_Inductive_Plasma_Accelerator_IPA_FRC_MergingCompression_Experiment
4. Creation of a High Temperature Plasma through Merging and Compression of Supersonic Field Reversed Configuration Plasmoids - ResearchGate, accessed September 2, 2025, https://www.researchgate.net/profile/George-Votroubek/publication/228886362_Creation_of_a_high-temperature_plasma_through_merging_and_compression_o

[f_supersonic_field_reversed_configuration_plasmoids/links/0deec51b8bdf9a2523000000/Creation-of-a-high-temperature-plasma-through-merging-and-compression-of-supersonic-field-reversed-configuration-plasmoids.pdf](https://www.researchgate.net/publication/252996904_Compression_of_Dynamically_Formed_and_Merged_FRCs)

5. Compression of Dynamically Formed and Merged FRCs | Request ..., accessed September 2, 2025,
https://www.researchgate.net/publication/252996904_Compression_of_Dynamically_Formed_and_Merged_FRCs
6. US9524802B2 - Apparatus and methods for fusion based power generation and engine ... - Google Patents, accessed September 2, 2025,
<https://patents.google.com/patent/US9524802B2/en>
7. US9082516B2 - Apparatus, systems and methods for fusion based power generation and ... - Google Patents, accessed September 2, 2025,
<https://patents.google.com/patent/US9082516B2/en>
8. US20110293056A1 - Method and apparatus for the generation, heating and/or compression of plasmoids and/or recovery of energy therefrom - Google Patents, accessed September 2, 2025,
<https://patents.google.com/patent/US20110293056A1/en>
9. (PDF) Overview of high density FRC research on FRX-L at Los Alamos National Laboratory, accessed September 2, 2025,
https://www.researchgate.net/publication/224002689_Overview_of_high_density_FRC_research_on_FRX-L_at_Los_Alamos_National_Laboratory
10. Thomas Intrator's research works | Los Alamos National Laboratory and other places, accessed September 2, 2025,
<https://www.researchgate.net/scientific-contributions/Thomas-Intrator-2122544374>
11. Spectroscopic Flow and Ion Temperature Studies of a Large s FRC, accessed September 2, 2025,
<https://plasma.physics.swarthmore.edu/brownpapers/CothranJFE07.pdf>
12. A sketch of the SSX-FRC device. The flux conserver is 40 cm in diameter... - ResearchGate, accessed September 2, 2025,
https://www.researchgate.net/figure/A-sketch-of-the-SSX-FRC-device-The-flux-conserver-is-40-cm-in-diameter-and-61-cm-in_fig1_228606692
13. Ion Temperature and Flow Velocity Measurements on SSX-FRC, accessed September 2, 2025,
<https://scholarship.tricolib.brynmawr.edu/server/api/core/bitstreams/f2b63797-3209-47ff-9b48-71d1fc1e780f/content>
14. Spheromak merging and FRC formation studies at SSX-FRC - Plasma Physics Laboratory, accessed September 2, 2025,
http://www.ppl.eng.osaka-u.ac.jp/USJ-WS/proceedings/cothran_proc.pdf
15. Dynamic Formation of a Hot Field Reversed Configuration with ..., accessed September 2, 2025, <https://link.aps.org/doi/10.1103/PhysRevLett.105.045003>
16. Dynamic Formation of a Hot Field Reversed Configuration with Improved Confinement by Supersonic Merging of Two Colliding High- I^2 Compact Toroids - eScholarship, accessed September 2, 2025,
<https://escholarship.org/uc/item/4xw0b7pc>

17. Dynamic Formation of a Hot Field Reversed Configuration with Improved Confinement by Supersonic Merging of Two Colliding High- - eScholarship.org, accessed September 2, 2025,
https://escholarship.org/content/qt4xw0b7pc/qt4xw0b7pc_noSplash_b65bbe5bb06638c4d40b02dfaef6db850.pdf
18. Collisional merging process of field-reversed configuration plasmas ..., accessed September 2, 2025,
http://tanuki.t.u-tokyo.ac.jp/inomoto/CT2017/CT2017_ft_final5.pdf
19. Overview of C-2 field-reversed configuration experiment plasma diagnostics - PubMed, accessed September 2, 2025,
<https://pubmed.ncbi.nlm.nih.gov/25430249/>
20. COMBINED FRC AND MIRROR PLASMA STUDIES IN THE C-2 DEVICE M. Tuszewski, A. Smirnov, B. H. Deng, S. A. Detrick, Y. Song, R. Andow - ResearchGate, accessed September 2, 2025,
https://www.researchgate.net/profile/Emil-Ruskov/publication/267429400_Combined_FRC_and_Mirror_Plasma_Studies_in_the_C-2_Device/links/546620170cf25b85d17f589a/Combined-FRC-and-Mirror-Plasma-Studies-in-the-C-2-Device.pdf?origin=scientificContributions
21. Achievement of Field-Reversed Configuration Plasma Sustainment via 10 MW Neutral-Beam Injection on the C-2U Device, accessed September 2, 2025,
https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202016/fe_c2016-preprints/preprint0644.pdf
22. Development of a Tomography Camera System with a Doublet Lens ..., accessed September 2, 2025,
https://www.researchgate.net/publication/371029986_Development_of_a_Tomography_Camera_System_with_a_Doublet_Lens_Unit_for_Supersonic_Collisional_Merging_Formation_of_FRC
23. Internal magnetic field measurements of translated and merged field, accessed September 2, 2025,
<https://tae.com/wp-content/uploads/fliptml5/101/files/basic-html/page1.html>
24. Observation of rapid flux coalescence in merging field-reversed configurations | Physics of Plasmas | AIP Publishing, accessed September 2, 2025,
<https://pubs.aip.org/aip/pop/article/31/1/010703/2932658/Observation-of-rapid-flux-coalescence-in-merging>
25. Visible-Light Imaging of Merging Formed FRCs by Wide-View Tomography Camera, accessed September 2, 2025,
<https://www.aappsdp.org/DPP2023/html/3contents/pdf/5294.pdf>
26. First direct experimental evidence of the merging of two colliding ..., accessed September 2, 2025,
https://www.researchgate.net/publication/363526712_First_direct_experimental_evidence_of_the_merging_of_two_colliding_field_reversed_configurations
27. Advanced physics calculations using a multi-fluid plasma model - University of Washington, accessed September 2, 2025,
https://www.aa.washington.edu/sites/aa/files/research/cpdlab/docs/Shumlak_CPC_2011.pdf

28. Abstract Field-reversed configuration (FRC) plasmas are of interest because of their potential application in magnetic confinement, accessed September 2, 2025, <https://w3.pppl.gov/psst/docs/kollasch.pdf>
29. (PDF) Hybrid simulations of FRC merging and compression - ResearchGate, accessed September 2, 2025, https://www.researchgate.net/publication/387798124_Hybrid_simulations_of_FRC_merging_and_compression
30. Hybrid simulations of FRC merging and compression, accessed September 2, 2025, <https://arxiv.org/pdf/2501.03425>
31. [2501.03425] Hybrid simulations of FRC merging and compression - arXiv, accessed September 2, 2025, <https://arxiv.org/abs/2501.03425>
32. Hybrid simulations of FRC merging and compression - arXiv, accessed September 2, 2025, <https://arxiv.org/html/2501.03425v1>
33. Simulation of Equilibrium, Stability, and Transport in Advanced FRCS - NUCLEUS information resources, accessed September 2, 2025, https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202020/f_ec2020-preprints/preprint0949.pdf
34. Collisional merging formation of a field-reversed configuration in the FAT-CM device | Request PDF - ResearchGate, accessed September 2, 2025, https://www.researchgate.net/publication/331514489_Collisional_mergingFormation_of_a_field-reversed_configuration_in_the_FAT-CM_device
35. Simulation of the target creation through FRC merging for ... - Bohrium, accessed September 2, 2025, <https://www.bohrium.com/paper-details/simulation-of-the-target-creation-through-frc-merging-for-a-magneto-inertial-fusion-concept/811035614840356866-51>
36. Princeton Plasma Physics Laboratory, accessed September 2, 2025, https://bp-pub.pppl.gov/pub_report/2005/PPPL-4075.pdf
37. MHD simulation of supersonic FRC merging corrected by non-invasive magnetic measurements | Request PDF - ResearchGate, accessed September 2, 2025, https://www.researchgate.net/publication/351707597_MHD_simulation_of_supersonic_FRC_merging_corrected_by_non-invasive_magnetic_measurements
38. MHD simulation of supersonic FRC merging corrected by non-invasive magnetic measurements - PubMed, accessed September 2, 2025, <https://pubmed.ncbi.nlm.nih.gov/34243321/>
39. FRC on the Path to Fusion Energy - (Moderate Density Steady-State Approach) - FIRE, accessed September 2, 2025, https://fire.pppl.gov/fpa06_hoffman_frc.pdf
40. Dr John Slough | Fuelling the Next Generation of Rockets with Nuclear Fusion, accessed September 2, 2025, <https://www.scientia.global/dr-john-slough-fuelling-the-next-generation-of-rockets-with-nuclear-fusion/>
41. Helion Energy - Wikipedia, accessed September 2, 2025, https://en.wikipedia.org/wiki/Helion_Energy
42. Helion Energy - Wikiwand, accessed September 2, 2025, https://www.wikiwand.com/en/articles/Helion_Energy

43. PPPL-4024.pdf, accessed September 2, 2025,
https://bp-pub.pppl.gov/pub_report/2005/PPPL-4024.pdf
44. Fusion Research at Los Alamos National Laboratory - FIRE, accessed September 2, 2025, https://fire.pppl.gov/FPA12_Wurden_LANL.pdf
45. Andrew David Ketsdever | CSU Pueblo, accessed September 2, 2025,
https://www.csupueblo.edu/provost-2022-search/_doc/curriculum-vitae_andrew-d-ketsdever_jan2022-2.pdf
46. Preparation of Papers for AIAA Technical Conferences - NASA, accessed September 2, 2025,
https://www.nasa.gov/wp-content/uploads/2019/03/niac_2012_phaseii_slough_fusiondrivenrocketnuclearpropulsiontagged.pdf
47. Defense Primer: Budgeting for National and Defense Intelligence | Congress.gov, accessed September 2, 2025, <https://www.congress.gov/crs-product/IF10524>
48. Kelly, Intelligence Committee Colleagues Introduce Bill to Streamline Intel Acquisition Processes, accessed September 2, 2025,
<https://www.kelly.senate.gov/newsroom/press-releases/kelly-intelligence-committee-colleagues-introduce-bill-to-streamline-intel-acquisition-processes/>
49. Frequently Asked Questions - | SBIR, accessed September 2, 2025,
<https://www.sbir.gov/faq/all>
50. IGNITING BIG INNOVATION - Army SBIR, accessed September 2, 2025,
https://armysbir.army.mil/wp-content/uploads/2024/04/2023-SBIR-YIR_v2.pdf
51. FAQ - General Questions | SBIR, accessed September 2, 2025,
<https://www.sbir.gov/faq>
52. Process Guide Interactive - Defense SBIR/STTR, accessed September 2, 2025,
<https://www.defensesbirsttr.mil/SBIR-STTR/>
53. Lockheed Martin and U.S. Joint Forces Command Sign Cooperative Research and Development Agreement, accessed September 2, 2025,
<https://investors.lockheedmartin.com/news-releases/news-release-details/lockheed-martin-and-us-joint-forces-command-sign-cooperative/>
54. Lockheed Martin and U.S. Joint Forces Command Sign Cooperative Research and Development Agreement - Nov 2, 2005, accessed September 2, 2025,
<https://news.lockheedmartin.com/2005-11-02-Lockheed-Martin-and-U-S-Joint-Forces-Command-Sign-Cooperative-Research-and-Development-Agreement>
55. Lockheed Martin, CU Boulder expand research collaboration, accessed September 2, 2025,
<https://www.colorado.edu/industry/2017/08/29/lockheed-martin-cu-boulder-expand-research-collaboration>
56. 2005 annual report - FIRST Robotics, accessed September 2, 2025,
https://www.firstinspires.org/sites/default/files/uploads/resource_library/2005_Anual_Report.pdf
57. Lockheed Martin Compact Fusion Reactor - Wikipedia, accessed September 2, 2025, https://en.wikipedia.org/wiki/Lockheed_Martin_Compact_Fusion_Reactor
58. Compact Fusion | Lockheed Martin, accessed September 2, 2025,
<https://www.lockheedmartin.com/en-us/products/compact-fusion.html>
59. Lockheed Martin's fusion-powered fighter and bomber plans - YouTube,

accessed September 2, 2025, <https://www.youtube.com/watch?v=-Vdag-7McJQ>

- 60. Lockheed Martin CFR | Encyclopedia MDPI, accessed September 2, 2025, <https://encyclopedia.pub/entry/29752>
- 61. (PDF) Plasma physics: The fusion upstarts - ResearchGate, accessed September 2, 2025, https://www.researchgate.net/publication/264204212_Plasma_physics_The_fusion_upstarts
- 62. Team Grant Opportunities - FIRST Robotics, accessed September 2, 2025, <https://www.firstinspires.org/robotics/team-grants>
- 63. FRC Market Research, Brand Development & Consumer Insights | NY, accessed September 2, 2025, <https://www.frcresearch.com/>
- 64. assist - FIRST Robotics, accessed September 2, 2025, https://www.firstinspires.org/sites/default/files/uploads/resource_library/2015_Annual_Report.pdf
- 65. SIMATIC CC712: License Conditions and License Summary, accessed September 2, 2025, https://cache.industry.siemens.com/dl/files/963/109767963/att_1099078/v1/OSS_CloudConnect7_99.pdf
- 66. BAE Systems, Inc. to Return as Presenting Sponsor for 2025 FIRST® Championship Event, accessed September 2, 2025, <https://www.firstinspires.org/about/press-room/BAE-Systems-Inc-to-Return-as-Presenting-Sponsor-for-2025-FIRST-Championship-Event>
- 67. BAE Systems awarded \$49 million Air Force Research Lab contract to enhance intelligence sharing, accessed September 2, 2025, <https://www.baesystems.com/en/article/bae-systems-awarded--49-million-air-force-research-lab-contract-to-enhance-intelligence-sharing>
- 68. BAE Systems and Reaction Engines to develop a ground breaking new aerospace engine, accessed September 2, 2025, <https://www.baesystems.com/en/article/bae-systems-and-reaction-engines-to-develop-a-ground-breaking-new-aerospace-engine>
- 69. Delivering real advantage - 2024 annual report - BAE Systems, accessed September 2, 2025, <https://annualreport.baesystems.com/dam/jcr:dea92b65-d5d4-4dea-b502-d9cd5951e05/BAE-Systems-Annual-Report-2005.pdf>
- 70. Undertakings - BAE Systems, accessed September 2, 2025, <https://www.baesystems.com/en/our-company/undertakings>
- 71. Helping to develop a new Space science mission concept to investigate fundamental space physics around Earth in ESA backed study - BAE Systems, accessed September 2, 2025, <https://www.baesystems.com/en/insight/helping-to-develop-a-new-space-science-mission-concept-to-investigate-fundamental-space-physics-around-earth-in-esa-backed-study>
- 72. Directed energy atmospheric lens could revolutionise future battlefields - BAE Systems, accessed September 2, 2025, <https://www.baesystems.com/en/article/directed-energy-atmospheric-lens-could>

[-revolutionise-future-battlefields](#)

73. From sci-fi to sci-fact - BAE Systems, accessed September 2, 2025,
<https://www.baesystems.com/en/story/from-sci-fi-to-sci-fact>